Changes in Coal Industry Structure and Trading

Global Insight
December 2005
Guillaume PERRET
Changes in steam coal market structure

• **Decrease in market power** from traditional mining company

• Emergence of **new countries** and **new suppliers** as major exporters

• Physical steam coal becomes a **commodity**

• **New physical traders** enter the market

• Robust growth in **coal derivatives** volumes

• **Barriers to entry** reduce

• **Increased complexity**: freight, emissions, gas interaction
Emergence of new exporters

Steam Coal Exports by Major Exporters, 2000 – 2004

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>80</td>
<td>87</td>
<td>98</td>
<td>104</td>
<td>108</td>
<td>35.0%</td>
</tr>
<tr>
<td>Indonesia</td>
<td>58</td>
<td>67</td>
<td>75</td>
<td>93</td>
<td>103</td>
<td>77.6%</td>
</tr>
<tr>
<td>China (net exp.)</td>
<td>41</td>
<td>70</td>
<td>62</td>
<td>61</td>
<td>68</td>
<td>65.9%</td>
</tr>
<tr>
<td>South Africa</td>
<td>69</td>
<td>67</td>
<td>71</td>
<td>72</td>
<td>67</td>
<td>-2.9%</td>
</tr>
<tr>
<td>Colombia</td>
<td>35</td>
<td>39</td>
<td>35</td>
<td>46</td>
<td>54</td>
<td>54.3%</td>
</tr>
<tr>
<td>Russia</td>
<td>30</td>
<td>29</td>
<td>29</td>
<td>40</td>
<td>51</td>
<td>70.0%</td>
</tr>
<tr>
<td>Total</td>
<td>313</td>
<td>359</td>
<td>370</td>
<td>416</td>
<td>451</td>
<td>44.1%</td>
</tr>
</tbody>
</table>

Source: EIA / Global Insight / Verein der Kohlenimporteure / industry sources / Prospex Research
Steam Coal: major exporters

• Australia (stable /up)

• Indonesia (up +)

• South Africa (stable)

• Columbia

• Russia (recent up)

• China wild card: until recently exporter but may become import
New Suppliers bring more diversity

• **Russia**: 3-5 suppliers (SUEK, MIR Trade)

• **Indonesia**: 5-10 companies

• **Steam coal high prices bring new mining projects to the market**
 – Columbia
 – Indonesia
 – Australia
 – Russia
 – Vietnam
Steam Coal flows become more complex
Physical Coal as a Commodity

• **Spot** business
 – Before 2000: 80-90 % long term annual contracts
 – 2005: about 70 % spot business (either front or forward position)

• **Different Ways** of trading
 – Bilateral
 – Global Coal: only platform for physical trading
 – OTC brokers (growing)

• **Why can utility take generic coal?**
 – Flexible boilers
 – Logistic: imports large vessels and blending

• **Who takes generic coal?** Germany, Scandinavia, The Netherlands
Physical Coal as a Commodity

• Traditional mining companies sell coal for trading

• **Utilities** play key role in providing liquidity in physical trading

• Entry of **new traders** in physical market:
 – International Trading Houses: Cargill, Louis Dreyfus
 – Oil & Gas traders
Derivatives volumes: a robust growth

Estimated OTC Volume traded in MT

Source: Prospex Research

guillaume.perret@btinternet.com
Derivatives Steam Coal Products

• **API2 (ARA)**
 - Assessment for 150 KT of physical standard steam coal delivered into ARA
 - In USD/MT basis 6000 kcal/kg
 - Average of “Mc Closkey” and “Petroleum Argus”

• **API4 (Fob South Africa)**
 - 150 KT of physical coal Free on Board Richards Bay
 - In USD/MT basis 6000 kcal/kg
 - Average of Mc Closkey, Petroleum Argus, S. African Coal Report

• **Fob Newcastle (Australia)**
 - Derivative developed by Global Coal
 - Based on physical trades or bids offers
 - No market assumptions
Principals

- **Utilities**: EDF, RWE, NuON, E.ON, Vattenfal, Energy E2
- **Mining companies**: Glencore, BHP Billiton, Rio Tinto
- **Banks**: Morgan Stanley, Barclays Capital, Deutsche Bank
- **Asian players** increasingly involved:
 - Australia (suppliers)
 - Japan (utilities)
 - China (suppliers)
 - Indonesia (suppliers)
- **USA** market still independent, NYMEX
Brokers

- Derivatives
 - GFI, ICAP, Amerex
 - TFS

- Physical
 - Global Coal (physical + financial)
 - Brokers (growing)

- Clearing
 - No clearing so far although talks
 - May develop in 2006 / 2007
Prices API2, API4

API2

API4

Historical range
Low volatility

Chinese imports iron ore

Mixed signals
Freight down
API4 up
Freight: an increasingly important driver
Freight prices: a brave new world

Richards Bay / Rotterdam Cape, 1989-2005

Source: Baltic Exchange
Freight Derivatives: explosion of volumes

Source: Prospex Research
Freight Derivatives: main product

• Panamax
 – 55 % market
 – Main product 4 TCs (average 4 time charters)

• Capesize
 – 25 % of market
 – Main products:
 • Voyage Richards Bay / Rotterdam
 • Average 4 TCs

• Handymax
 – 20 % market
 – Main product: average 6 TCs
Freight as a Steam Coal Driver

- **Volatility:**
 - Freight: 50 %
 - Steam coal: 30 %

- Utilities shift purchase from **Delivered ARA** to **FOB origin**

- **Separate risk management** of Steam Coal and Freight position

- **Better knowledge** of freight market
 - **Time charter** instead of voyage
 - Usage of **derivatives**

- **Implied freight**
 API2 – API4 = Route 4 (Cape Richards Bay / Rotterdam)
Emissions: a new driver for steam coal
Coal / Gas comparison

- **Coal Power Station**
 1,000 MW
 Efficiency: 38%
 Estimated allowance: 2.5 mn tons CO2

- **Potential Revenues**:
 17th Oct.: emission 23.10 € / MT
 57.7 mn €

- **More potential additional profits** if coal power station doesn’t use all allowances

- **Gas Power Station**
 1,000 MW
 Efficiency: 55%
 Estimated allowance: 1.7 mn tons CO2

- **Potential Revenues**
 39.2 mn €
Coal / Gas comparison

- **CO2 release**
 0.34 ton / MWh
 Efficiency 38 %
 A.E: 0.895 ton CO2 / MWh

- **CO2 release**
 0.1874 ton / MWh
 Efficiency 55 %
 A.E: 0.340 ton CO2 / MWh

- Coal plant generates **2.5 times more CO2 per MWh produced**

- **Emission**
 B.E: 23.1 € / ton CO2
 A.E: 20.67 € / MWh

- **Emission**
 B.E: 23.10 € / ton CO2
 A.E: 7.87 € / MWh

- Emission price for gas is 35 to 40 % the one of coal

guillaume.perret@btinternet.com
Coal / Gas comparison

![Graph showing the comparison between Coal and Gas in terms of emission and additional cost.](image)
Dark spread / Spark spread

• **17th October 2005**
 Base load: 52.40 € / MWh
 Coal API2 54.35 $ / ton
 Emission 23.1 € / ton

• **Steam coal ARA**
 45.29 € / Mt
 B.E: 6.49 € / MWh
 A.E: 17.08 € / MWh (38 %)

• **Dark Spread (without CO2)**
 52.40 – 17.08 = 35.32 € / MWh

• **Dark Spread with CO2**
 35.32 – 20.67 = 14.65 € / MWh

• **17th Oct. 2005**
 Base load: 52.40 € / MWh
 Gas: 19.53 € / MWh
 Emission 23.1 € / ton

• **Gas price**
 Efficiency 55 %
 A. E: 35.51 € / MWh

• **Spark Spread (without CO2)**
 52.40-35.51 = 16.89 € / MWh

• **Spark Spread with CO2**
 16.89 - 7.87 = 9.02 € / MWh
Coal / Gas comparison

- Cost of *electricity* production may rise due to additional allowance cost

- **Utilities** get important extra revenues if they don’t use all allowances

- Cost of allowance for *gas* after efficiency about 35 to 40 % of cost for *coal*

- End consumers pay additional costs ?!
Increased Interaction in Energy Mix

• Increased correlation in energy mix

• If [Gas-Coal] up then demand coal up, allowance price up

• If nuclear and renewable output up, then coal demand down, allowance price down

• Electricity price up, then coal and allowance price up

• Emission become the centre point of the equilibrium?